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Review of the Methods of Quantification
by Yutaka Tanaka*

In order to analyze qualitative observations, methods of quantification or optimal scaling have been
proposed by Fisher, Guttman, and Hayashi. According to these methods, scores are assigned optimally in
some objective and operational sense to the qualitative categories.
The present paper mainly reviews Hayashi's four methods of quantification from the mathematical point

of view. They are widely used, especially in Japan, in various fields such as social and marketing surveys,
psychological research, medical research, etc., where information is obtained mainly in the form of
qualitative categories. The first and second methods are applied to the case where an external criterion is
present, and are used to predict the external criterion or to analyze the effects of factors. On the other hand,
the third and fourth methods are applied to the case where no external criterion is present, and are used to
construct a spatial configuration so as to grasp the mutual relationship of the data.

After reviewing Hayashi's four methods, we discuss two topics which have been pointed out as the
problems to be solved in applying the methods ofquantification. One is quantification for ordered categories
and the other is statistical consideration. With respect to these topics we review some recently developed
methods including the studies due to the present author. Finally we mention briefly several computer
programs available in Japan.

Introduction
In some experimental and observational studies,

the responses and/or attributes of subjects are mea-

sured only by qualitative categories. In order to
analyze such observations, methods of quantifica-
tion or optimal scaling have been proposed by,
among others, Fisher (1), Guttman (2), and Hayashi
(3-9). According to these methods, scores are as-

signed optimally in some objective and operational
sense to these qualitative categories. In Japan,
Hayashi's methods of quantification are well known
and widely used in various fields, such as social and
marketing surveys, psychological research, and
medical research, where information is obtained
mainly in the form of qualitative categories.
The main purpose of the present paper is to review

Hayashi's four methods of quantification. They are

explained mainly from the mathematical point of
view. Then, in addition, we focus on two topics,
which have been pointed out as the problems to be
solved in using the methods of quantification: the
methods of quantification for ordered categories and
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the statistical considerations. Finally we mention
briefly several computer programs available in
Japan.

Hayashi's Four Methods of
Quantification
Among various methods proposed by Hayashi

(3-9), especially the four methods shown in Table 1
are widely applied in Japan and called simply as
Hayashi's first-fourth methods of quantification. As
shown in Table 1, they are divided into two main
classes. One contains the methods for the case where
an external criterion is present and is used to predict
the external criterion or to analyze the effects of
factors. The other contains the methods for the case
where no external criterion is present, and is used to
construct a spatial configuration so as to grasp the
mutual relationships of the data. The "external
criterion", which is also called "outside variable",
means something to be predicted or explained.

First Method of Quantification
(Quantification I)
The first method of quantification is a method to

predict the quantitative external criterion or criter-
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Table 1. Hayashi's four methods of quantification.

Situation Observation Method

Case with an external criterion (for predic- The external criterion is observed quantita- First method (to maximize the correlation
tion or analyzing the effects of factors) tively coefficient)

The external criterion is observed qualita- Second method (to maximize the correlation
tively ratio)

Case with no external criterion (for classifi- Response patterns of subjects on some attri- Third method (to maximize the correlation
cation or constructing a spatial configura- butes are given coefficient between subjects and categories)
tion)

Similaities between pairs of subjects are ob- Fourth method (to maximize the objective
served quantitatively fuinction [Eq. (53)]

Table 2. Data for the first method of quantification.

Item Item Item
1 2 ... I

External
criterion 1 2 ... Ci 1 2 ... C2 ... 1 2 ... cl

Y1 v - /
Y2 / v v

Yn / v /

ion variable on the basis of the information concern-
ing the qualitative attributes of each subject and to
analyze the influence of each attribute to the criter-
ion variable. The data for this method are usually
given in the form of Table 2.

Let Y be the quantitative external criterion, and let
us suppose that every subject under study can be
classified into one and only one of Ci categories of the
i-th attribute item for i = 1, 2, ..., I. Dummy vari-
ables are introduced such that

j1, if subject a belongs to categoryj of the
xa(ij) = i-th attribute item, i = 1,2, .. ., I

0, otherwise, (1)
for subject a, a = 1, 2, . . ., n. In order to analyze the
relationships between the external criterion and the
qualitative attributes we shall assign a quantity or
numerical score su to categoryj of the i-th item, and
as a result assign a score

Wa(i) = M SyXa (O)
j = 1

i= 1, 2, . . ., I

to attribute i of subject a and a score

Y(c,a = Wa(1) + w (2) + * ** +W+ (I)
I c(i)

= I SUxa Oij)
i= 1 j= 1

where

cj cU) (3)
to subject a. The principle for quantification is to
maximize the sample correlation coefficient between
{Y,} and {Y(C, i.e.,
p2 = r2 (Y, Y(c))

{a (Ya - Y) (Y(c) - y(C)12
Ea (Ya Y) a (Y(c)a - Y(C))2

-* max.

(4)

The basic idea is to predict the external criterion as
accurately as possible on the basis of a linear combi-
nation, Eq. (3). Due to the fact that the principle of
maximizing the correlation coefficient is equivalent
to that of minimizing the mean-square error (10), we
obtain the normal equation (5) from the theory of
ordinary linear regression:

(2)
E If(Uv, jk) SJk = 1. Y.Xa(UV)

vk

u = 1, 2, . . .,10,
v = I , 2, . .. I cu (5)

where

f (uv, jk) = 10xaUk)x0 (uv) (6)
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The optimal scores for the categories of the attri-
butes are obtained by solving the linear simultaneous
equation (5). Then, using the optimal scores {sij},
each qualitative attribute is quantified by Eq. (2) and
the external criterion Y can be predicted by Eq. (3).

It may be considered that the efficiency of quan-
tification is high when the multiple correlation coef-
ficient or R2 = Pmax2 is large, but it is low when R2 is
small. The contribution of the i-th attribute to the
external criterion is measured by the partial correla-
tion coefficient
r [Y W(i); W(1), . ,W(i - 1), W(i + 1),.., W(I)

(7)
orapproximately, by the range ofthe assigned scores

Ri = maxj Su, minj Su (8)
In actual data analysis, partial correlation coeffi-
cients and/or ranges are often represented graphi-
cally for the convenience to find important attributes
or factors.
No probabilistic model is assumed in the first

method of quantification. However, if the problem is
recognized as the multiple regression of the external
criterion {Y,a} on the dummy variables {x<, (ij)} such
that

YaY. ; Oijxz (ij) + e(xa
ii

a = 1,2, ..., m (9)

and if the normality of the error term ea can be
assumed, the statistical properties of the scores or
estimates su for Oij are derived by the theory of re-
gression, and the contribution of each attribute can
be tested exactly by using the ordinary significance
test of regression coefficients.

In order to analyze the relationships between the
external criterion and the qualitative attributes we
shall assign a numerical score Skl to category 1 of the
k-th item as in the case ofthe first method of quantifi-
cation, and as a result assign a score

c (k)

Wij(k) = SSklXiJ(kl) (11)

to qualitative attribute k ofthej-th subject in 7i, and a
score

Y(c=ij Wi, 1) + WJ3(2) + * + Wij(I)
= I2Skl XiJ(kl) (12)

k I

to thej-th subject in iT,. The principle of quantifica-
tion is to maximize the sample correlation ratio or the
between-groups variation relative to the total varia-
tion, i.e.,

R2= SB/ST -- max. (13)

where

SB = E- (Y(c) .

- )
i , I gi (kl) gi (uv) _nIkilnuv }

k I u v i ni n

ST = yiI(Y(c)iJ Y(C)-.)
i j

= III Y. f(kl, uv)
k I u v

n'klntSv1

n

Using the matrix notations such that
S = [si, 5 12, .. ., SIC(fl, . . ., 5 . . ., SjC(I)]

SklSuv

(14)

v (15)

Yci x 1

Second Method of Quantification
(Quantification II)
The second method of quantification is a method

to predict the qualitative external criterion on the
basis of the information concerning the qualitative
attributes of each subject and to analyze the influ-
ence of each attribute to the discrimination of the
external criterion. The data for this method are usu-

ally given in the form of Table 3. It is formulated in
the following two ways.
Formulation Based on Canonical Analysis. We

suppose there exists an external criterion with r cat-
egories or groups 7ri, 1T2, . . ., ir, and introduce the
following dummy variables:

1, if thej-th subject in rii belongs to
xu (kl) = category I of the k-th attribute

O, otherwise, k = 1, 2, . . ., I (10)

B = [b(uv, ki)] :lei x I ci
i i

T = [f(uv,kl) - n'vunfkl/n]: c x Ic i
i i

b(uv,kl) E gi(kl)gi(uv) _ klnuv
ni n

n UV = the number of subjects belonging to category
v of the u-th item,

gi(uv) = the number of subjects belonging to cate-
gory v of the u-th item in the i-th group,

f(uv, kl) = the number of subjects belonging to cate-
gory v of the u-th item and category 1 of
the k-th item simultaneously,

the optimization problem (13) is expressed as the
problem to maximize the ratio of quadratic forms,
i.e.,

In2 = s'Bs/s'Ts -- max.

and is transformed to the eigenvalue problem
(16)
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Table 3. Data for the second method of quantification.

Item Item Item
1 2 I

External
criterion 1 2 ...Cl 1 2 ... C2 ... 1 2 ... c,

I1 / /a
2 / 1 1

nl VI I~ I

r 1 / /
2 /I V /

nr / /

(B - r2T) s = 0 (17)
Due to the condition of exclusive and exhaustive

categories there exist linear dependencies among the
dummy variables such that

Yxij(kl) = 1,

k = 1, 2, ..., I, for any i,j (18)
Then without any loss of generality we may exclude
each dummy variable for any arbitrary category per
item and the corresponding rows and columns of the
matrices B and T. It is just the same to assign zero
scores to such categories. After solving

(B -r2T) s = 0 (19)
where the matrices with the tilde indicate the ab-
breviated matrices, we may normalize the location to
satisfy the relation

E n'kl Skl = 0

k = 1, 2,I (20)
if necessary. The number of nonzero eigenvalues is
generally given by min [r - 1, I (ci - 1)] except for
degenerated cases. i

The optimization problem (16) is interpreted as the
application of canonical analysis for dummy vari-
ables {xij (kl)}.
Furthermore, the scores assigned to the categories

of the external criterion are defined by the mean
values of Y(c)u within the groups, i.e.,

1
Y(C=i. - I Y(Cij = E ESklXii(kl)

ni ik 1

i= 1,2, .... r (21)
where ni denotes the sample size of mr.
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Formulation Based on Canonical Correlation
Analysis. In the above formulation the dummy vari-
ables were introduced for the categories of qualita-
tive attributes. Now we shall introduce the dummy
variables for the categories ofnot only the qualitative
attributes but also the qualitative external criterion,
i.e.

r1, if subject a belongs to category i
zY(i) = of the external criterion

0, otherwise (22)
1, if subject a belongs to category I

x0(kl) = of the k-th attribute item
0, otherwise (23)

In order to analyze the relationships between the
qualitative extemal criterion and the qualitative at-
tributes we shall assign numerical scores ski to cate-
gory I of the k-th attribute item and t1 to category i of
the external criterion.
Then the quantities

Wcou = X tIZOQ)
I * I

and
I ek

Y(c)m = I I ski Xa (kl)
k -I l-lI

(24)

(25)

are given to subject a from the viewpoints of the
qualitative external criterion and the qualitative at-
tributes, respectively. Now we shall introduce the
principle of quantification to maximize the sample
correlation coefficients between {W(C,} and {Y(C,},
or in other words, the sample canonical correlation
coefficient between the two sets ofdummy variables
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{Za(),i = 1, 2, .. ., r} and{xa(kl), k = 1, 2, ...,I,
I = 1, 2, . . ., Ck}, i.e.,

r2(W(C), Y(,)) -* max. (26)
Let us use the matrix notations such that

Sii S12
S=

S21 S22

where S is the sample variance-covariance matrix of
the dummy variables {za(i)} and {xa(kl)},
Sil = The r x r matrix with [ni8ij - (ninjln)]/n as its
(ij) element
S12 = the r X I Ck matrix with [gi(kl) - (nin 'kl)ln]ln as

k

its (i,kl) element
S22 = the Ickx I Ck

k k

matrix with [f(kl uv) - (n'kln'uV)/n]/n as its (kl, uv)
element,
t = [tl , t2,.. tr]f
S = [S1, . . ., ic(i) Slj, * * ., SIC(I)]

Then the above principle is expressed as

p2= r2 (W(). y) = (t S12 S)2
-- max. (27)

P r ~YV(C), '(C)) (t' Si it) (s' S22s)
As noted previously there exist linear dependencies
among the dummy variables, we may exclude each
dummy variable for an arbitrary category per item
and the corresponding rows and columns of the ma-
trix Sip, i, j = 1, 2. Denoting such abbreviated ma-
trices with the superimposed (-), we obtain

2 = 12 max. (28)p-
( 1S ) (VS S22

Hence, due to the theory of canonical correlation
analysis, the optimal scores satisfying (28) are given
by solving the simultaneous equations such as

-ppS11 + S12 s = 0
S21 l - p S22 s = 0 (29)

which are transformed into the following two types
of eigenvalue problems with the common eigen-
values.

(S12 S221 S21 - p2 Sll)I = 0 (30)

(S21 S11i1 S12 - p2 S22) s = 0 (31)

The optimal scores for the categories of the external
criterion and the attributes are given by the eigen-
vector corresponding to the maximum eigenvalue.
Concerning the relationship between the results,

the following are derived.
Since the inverse of the matrix
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S11 = (1ln) diag [n2, ..., nr]
+ [n2/n, ..., njn] [n2/n, ..., nIn]'

can be expressed explicitly by

S11-' = n diag [1/n2, . , l/nr]
+ (n/nl) [1, . .., 1] [1, . .., 1]'

(32)

(33)
the matrices in the eigenvalue problem (31) are ob-
tained as the (kl, uv) element of

S2lSlllSl=I {gi(kl)gi(uv)_ ntklnfUV}~21 ~11_1 512= {I ~k)g(v - ~'1'v1(34)
n i ni n

and the (kl, uv) element of

S22 = - 1{f(kl, uv) - }-(35}

Hence

n S21 Su1- S12 = B
* S22 = T (36)

Thus the two eigenvalue problems (19) and (31) are
equivalent. Furthermore, it becomes clear that the
relationships

ti= (Y(c,i. + const.)/p
i= 1, 2, . . ., r (37)

hold about the scores for categories of the external
criterion and that they are equivalent to each other
except for the normalization of location and scale.
However, the formulation based on canonical cor-
relation analysis is more appropriate in view of the
quantification of the external criterion, and more
convenient to treat ordered categories ofthe external
criterion or to derive the asymptotic properties of the
sample optimal scores.
Using the optimal scores {Skl} and {tj}, the qual-

itative attributes and the qualitative external criter-
ion are quantified by Eqs. (25) and (24). It may be
said, as in the case of the first method of quantifica-
tion, that the efficiency of quantification is high when
the correlation ratio r2 (or correlation coefficient p2)
is large, but it is low when r2 is small. The contribu-
tion of the i-th attribute to the external criterion is
measured by the partial correlation coefficient
r[W(c) * W(i); W(1), . ,W(i - 1), W(i + 1), .I I., W(I)

(38)
orapproximately by the range ofthe assigned scores

Ri= max sij - min Stj
i i

When the discrimination among the categories of
the external criterion is not satisfactory by assigning
unidimensional scores, we may use multidimen-
sional scores. In such cases the eigenvectors corre-
sponding to the eigenvalues smaller than the largest
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should be used. The principle becomes the maximi-
zation of nliqm2 instead of q2 under the orthogonality
constraints,

Si' T sj = 0
for i j (40)

Hayashi (6) discussed precisely the multidimen-
sional case.

Fisher (1) proposed a method to quantify the re-
sponse categories by the principle to maximize the
variation due to the effects of factors relative to the
total variation in a two-way analysis of variance. It
gives the same result with that of Hayashi's second
method when the response is chosen as the external
criterion. A similar principle was also applied by
Johnson (11).
For the investigation of a factor-response relation-

ship, Hayashi's second method may be applied in the
following two different manners. One is the case
where a response item is chosen as the external
criterion and the problem is to predict the response
from the qualitative factors by a similar way as the
regression analysis. It just corresponds to Fisher's
method. The other is the case where a factor is cho-
sen as the external criterion and the problem is to
discriminate between groups corresponding to the
categories of the chosen factor by a similar way as
the canonical analysis. In relation to these two situa-
tions several generalized principles were proposed
to quantify a single or multiple responses on the basis
of a univariate or multivariate linear model by
Tanaka and Asano (12, 13) and Tanaka (14).

Third Method of Quantification
(Quantification III)
Suppose that response patterns to categories of

qualitative attributes are given in the form ofTable 4.
In this table the subjects showing a same response
pattern are pooled into one row, and the frequency of
each response pattern is denoted by si, i = 1, 2, . . ..

Q. The basic idea of the third method of quantifica-
Table 4. Data for the third method of quantification.

Attribute category

Subject 1 2 3 ... j...j R Frequency

1 1 / I/ f
2 / v/ f2
3 f3

i / I fi

Q I / fQ

tion is to arrange the rows and columns so that those
which resemble to each other are gathered together.
Now let us assign numerical scores yi and xj to

subject i and categoryj, respectively. Then the event
that subject i responds to categoryj is expressed by a
pair of the numerical scores (yi,xj). The above basic
idea corresponds to the principle to maximize the
correlation coefficient between x and y. We define a
dummy variable such that

19 if subject i responds to
if{)= category j

0, otherwise
Then the principle is expressed as follows.

p = cxylorxo-, -- max

where
1 Q R

cxv = Y.E .E8i )sivi
In i=1 j=I

(n

I Q R

(2==_ E EU)SzX2j-
In i= i j =

Q R

I I ai6)sjxj
i =1 j=I

l Q
_YE
ln =I

(41)

(42)

(43)

R 2

E 8ijsixi)
I= /

(44)

1 Q I Q 2

2 = _ I s,lIy,2- = E
In i=i In i= (45)

Ii and l denoting the number of categories to which
subject i responds and the average over i = 1, 2, . . ..

Q.
Using the similar procedure to the formulation

based on canonical correlation analysis in the case of
the second method, we can easily derive the follow-
ing eigenvalue problem, when we put

1 Q R

X = E I si)SiXj= O
ln i=1 j=i

for the normalization of location.

Hx = p2Fx
where

H = [hjk]
where

8i (Y) 8i (k)
hJk = li Si

,i
i=I

(46)

(47)

(48)
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1 _
Sx2 = (x, -X)2 = const.

n i (54)
Since Q and S52 are invariant under a shift of origin,
we may choose

Q

f,k = 8jk I S A (k)
i = I

X =O

(49)

ask indicating Kronecker's delta. Thus the optimal
scores {xj} are obtained as the eigenvector corre-
sponding to the largest eigenvalue. The optimal
scores {yj} are obtained by

1 R

yi= E xjiS(i)
li j=1

If the information is poor by assigning unidimen-
sional scores, we may use multidimensional scores.
In such cases the eigenvector corresponding to the
eigenvalues smaller than the largest should be used.
The principle becomes to maximize Hipi by assigning
multidimensional scores [xl"I, X(2, .. ., xi('] and
y1 y,(2), * * ., y,(t)] under orthogonality conditions,

x('"' F x(k) = 0

(50)

(55)
without any loss of generality. Introducing a La-
grange multiplier X, the problem (53)-(54) is trans-
formed to

L = Q - (s,2-const.)
- E eij (xi - Xj)2

i # j

XxX2 - const.i -*max.

i (56)

Hence we obtain

Ih ijxj = (X/n + Yhi) xi
j j (57)

where

hij= h= eij + en (58)

for]j k (51) Since Q does not depend on eij which is undefined,
we may specify as

'I ~~- . . I . -d I

Concerning yU', the orthogonality conditions (51) are
expressed by

yU)' G y(k) = 0

Yhj = I(eij = ejM) = 0

(59)

forj 74 k (52) finally following eigenvalue

problem

where G = [SJkSJjl].
As methods similar to or extended from Hayashi's

third method there exist the scalogram analysis of
Guttman (2) and the categorical canonical correla-
tion analysis of Okamoto and Endo (15, 16) and so
on.

Fourth Method of Quantification
(Quantification IV)
Suppose a similarity index eu is observed between

each pair of subjects in a sample of size n, where the
similarity index indicates that a pair (i, j) with a large
eu is more similar with each other than a pair (i',j')
with a small ei'j'. The fourth method ofquantification
is a method to quantify the subjects on the basis of
these similarity indexes, to represent them in an

appropriate dimensional Euclidian space and, if it is
required, to classify them.
When we assign a numerical score xi to subject i,

the principle for quantification is expressed as fol-
lows.

Q = - II eij (xi - Xj)2 -) max.

i#j (53)
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(60)H x =,u x

where
H = [hi] :n x n

x = [xi] :n x 1
I = A/n

Obviously, from Eqs. (60) and (61),

X = n x' H x/x'x = Q/5X2

(61)

(62)

Therefore, the optimal scores are given by the eigen-
vectorx'1) corresponding to the largest eigenvalue ,i
of Eq. (60), normalized according to Eqs. (54) and
(55).

In the case where the classification is not satis-
factory with the eigenvector x(l), we may use the
eigenvectors corresponding to the second -p-th
largest eigenvalues. The principle becomes to
maximize

Q(xi() - x,(1D)2 (xi(2) -X(2)2
i yij s2(X()) 52(X(2))

(63)
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where

F = 1fJk]
where

- I I I I I I . I A- I

_" * {4't. , I9 I I

(Xi(p) -Xi(p))2'
+ ... + O.

s2(X(P))



under the orthogonality conditions

cov (x(k), xz() = - E (Xi(k) - X(k)) (Xi(l) - X(l)) = O
ni

(64)

by the idea of assigning a multidimensional score
X(D),. ..., xi(P)) to subject i. The number of dimen-
sions p is determined by the decreasing pattern of

(1) (2) (n),l 9 A . ..,,en).
According to the above explanation it may be clear

that the fourth method of quantification is a kind
of multidimensional scaling (MDS), or precisely
speaking, a kind of metric MDS in the sense that the
result depends on the value of ei; itself instead of the
mnk order of eu.

Quantification of Ordered
Categories

In the methods of quantification described above,
no order relation is supposed among the categories of
the qualitative external criterion and/or the qualita-
tive attributes. Even if we have prior information
about the order relations in actual data analysis, we
sometimes obtain a solution inconsistent with the
prior information by applying the ordinary methods
ofquantification. In such cases it may be appropriate
to apply the methods of quantification for ordered
categories, which we shall discuss in this section.

Case with Some Order Relations among the
Categories of Attributes in the First Method
of Quantification

Let us introduce inequality constraints corre-
sponding to order relations among the categories of
attribute items. Now that the first method of quan-
tification is mathematically equivalent to the multi-
ple regression analysis on dummy variables, we may
formulate the problem of quantification for ordered
categories as the problem of regression with some
inequality constraints. Then we must solve the op-
timization problem (4) under some inequality con-
straints such as, for example,

SjA . Sj2 2 ...* SJc (65)

Case with Some Order Relations among the
Categories of the External Criterion in the
Second Method of Quantification
Although the categories of the external criterion

are defined as nominal in the ordinary method, we
sometimes meet the situations with ordinal external
criteria. For example, in medical research we meet
situations in which the severity rating, improvement
rating, or sometimes the movement of severity rating
should be chosen as the external criterion and we
wish to analyze the effects of factors on it.
According to the formulation based on canonical

correlation analysis, the optimal score vector is ob-
tained as the solution of Eq. (66)

p2 =iS12S22-1S21 t'S11 -+max. (66)
Thus the problem becomes to maximize the non-
linear objective function under an arbitrary set of
order restrictions such that

tj - tj,
(I,]') es (67)

where S denotes a set of pairs of subscripts corre-
sponding to the categories ordered theoretically.
The problem of quantification under order restric-

tions was studied by Bradley, Katti, and Coons (17),
Nishisato and Arri (18), Tanaka and Asano (19),
Tanaka, Asano, and Kodake (20), and Tanaka (21),
among others. Bradley et al. (17) solved the case of
complete order restrictions. Nishisato and Arri (18)
extended it to the case of a special type of partial
order restrictions, and we solved the case of arbi-
trary order restrictions generally (19-21).
As shown previously (19, 21), the optimization

problem [Eqs. (66), (67)] can be always transformed
to the optimization problem under constraints of
nonnegativeness and linear equalities such that

p2 = Z' C z/ z' D z -) max.

subject to [
Z(k) = [Z(k,l, Z(k)2, * * *, Z (k)Ck]' 2 0

(68)

(69)
a (kj)Z(k) = 0

j = 1, 2, .. ., Ck- rk + I
k = 1,)2,) . ..,m

Since the constraints are generally linear, we can
reformulate the problem as in the case of the second
method of quantification and solve it iteratively but
efficiently by using Wolfe's reduced gradient proce-
dure. Furthermore, if we make use of the property
that the mean square error is quadratic with respect
to {Sjk}, we can solve the problem more efficiently by
the quadratic programming technique.

120

(70)
where z' = [zW(m, z ), * * . , Z(m)]. After this trans-
formation the numerical solution can be obtained
efficiently by applying Wolfe's reduced gradient
method. As a numerical example, Table 5, which
shows the data for a five-treatment experiment with
a five-point scoring scale, is taken from the study of
Bradley, Katti, and Coons (17). Let us suppose the
orderrestrictionsti -{t2, t3} 2t4 .-t5artificially and
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Table 5. Numerical example.a

Response

1 2 3 4 5
Treatment (tl) (t2) (13 (14) (t5) Total

1 9 5 9 13 4 40
2 7 3 10 20 4 44
3 14 13 6 7 0 40
4 11 15 3 5 8 42
5 0 2 10 30 2 44

Total 41 38 38 75 18 210

aData of Bradley et al. (17).

apply the generalized method, where a i {b, c}
denotes a Z b and a Z c. These restrictions are
expressed by Figure 1.
Then the problem becomes

Q = z' C z/z' D z- max. (71)

subject to

Z= [Z1,Z2, ...,Z5]O0

Zl - Z2 + Z3 - Z4 = 0

whereJ denotes a set of subscripts for the items with
ordered categories. Then the problem beconmes to
maximize the nonlinear objective function (16) under
the inequality restrictions (76) and can be solved
generally by the procedure described above.

In the discriminant analysis using the quantified
qualitative variables, we sometimes meet situations
where each of the order restrictions may be ascend-
ing or descending, i.e.,

SjorSJ2 SJC(J)
or

(77)

This type ofquantification was discussed by Tanaka,
Asano, and Kubota (22).

t2

(72)
(73)

14
15

where
0.310250 0.252340 0.336210
0.252340 2.099860 2.888190

C = 0.336210 2.888190 3.988550
0.394120 1.040670 1.436570
20. 162770 -0.280090 -0.300860

(Z4)

0.394120
1.040670
1.436570
0.790020
0.141990

12.998770 3.498790 -0.210730 9.289268
3.498790 12.998779 9.289268 -0.210730

D = -0.210730 9.289268 17.703537 8.203548
9.289268 -0.210730 8.203548 17.703537

L1.757150 1.757150 5.014279 5.014279

The equality restriction (73) correspor
cuit tl-t2--t4--t3--t4 in Figure 1.
The application of the reduced gradi

the problem of Eqs. (71)-(73) yields the
in Table 6. Normalizing so as to satisfy
= 0.0, the optimal scores are given as

t = [1.0000 1.0000 0.1435 0.00

Case with Some Order Relations
Categories of the Attributes in ti
Method of Quantification

Suppose there exist some order res
that

5jj SJ22 ** 5f)

or
Sjl 32' ... Ss2

0.162770
-0.280090
-0.300860
0.141990
0.835500J

(74)

1.757150
1.757150
5.014279
5.014279
16.457138

(75)
ids to the cir-

ent method to
result shown

ti = 1 i nn t,

FIGURE 1. Order restrictions.

Case where there exist some order relations
in the third method of quantification
Suppose there exist some order restrictions such

that
Yi I

or
Xj ; Xji

(i, i') E T

(j,j')eS (78)
&I - I.V Laiu9J where T and S denote sets of subscripts for the pairs
s , of subjects and of categories with order relations,
°0 0.0000°] respectively. In fact we sometimes meet the cases

where the attribute categories are divided into sev-
among the eral items and the categories in each item are ordered
he Second theoretically. We also meet the cases where some

order relations are present among the subjects.
These problems can be solved by the second proce-

,trictions such dure above.
Kruskal (23) treated a situation analogous to the

latter cases and considered to rescale numerical
measurements so that on ANOVA model fits as well
as possible. He applied an algorithm which uses
isotonic regression like in his nonmetric multidimen-

j E J (76) sional scaling. Recently, de Leeuw, Young, and
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Table 6. Solution under t1 2 {t2,t3} > t4 2 t5.'

Cycle Z1 Z2 Z3 Z4 Z5 Q(Z)

0 *1.00000 1.00000 1.00000 1.00000 1.00000 0.1224780
1 *0.04757 1.10058 1.70579 0.60522 0.58841 0.1978295
2 0.06542 *1.10058 1.70580 0.60521 0.58839 0.1978315
3 0.08964 *1.85925 2.03080 0.26120 0.05930 0.2423639
4 0.05 140 *1.75611 2.03277 0.27666 0.05930 0.2435769
5 0.05140 *1.74103 2.03097 0.28994 0.05930 0.2435847
6 0.05140 *1.74063 2.03092 0.29029 0.05930 0.2435847
7 0.05 140 *1.73886 2.03070 0.29184 0.05930 0.2435848
8 0.05 140 *1.73990 2.03084 0.29094 0.05930 0.2435847
9 0.08 140 1.73944 2.03078 0.29134 0.08930 0.2435848

aAsterisk (*) indicates that it is selected as a -basic variable in each cycle.

Takane (24) generalized Kruskal's method and pro-
posed the alternating least squares algorithm. Com-
paring with these two methods, our method has the
following advantages and disadvantages (25).
Advantages. It is applicable to generalized criteria

foroptimal scaling such as CS-1-5, CM-1-7 proposed
previously (12-14). It is also applicable to the cases
with arbitrary partial order relations. The rapidness
of convergence depends only on the number of or-
dered categories, say p. Thus it can be efficiently
used when p is small.
Disadvantages. It does not converge rapidly when

p is large.

Statistical Considerations
Few statistical considerations of quantification

had been studied until comparatively lately.
Okamoto and Endo (16) investigated the asymptotic
distribution of the sample optimal scores for their
categorical canonical correlation analysis, which
was proposed as a generalization for third method of
quantification. Tanaka and Asano (12, 13) and
Tanaka (14) studied the statistical inference of
factor-response relationships as well as the asymp-
totic distribution ofthe dptimal scores based on their
CS-1-5 and CM-1-7 criteria, which were proposed as
generalizations for the second method of quantifica-
tion. Although the probabilistic models introduced
should be evaluated if they fit to the actual data, the
methods will be useful when the sample sizes are
large enough to be analyzed by asymptotic theories.
Consider the case of the second method of quan-

tification, where there exist a response and several
factors, and the response is chosen as the external
criterion. For such cases the probabilistic model
shown in Figure 2 has been proposed (12-14).
As shown in the preceding section, the optimal
scores are determined by an eigenvalue problem
such that

(A - X B) t = 0

By means of the 8-method, small deviations of the
eigenvalues and vectors can be asymptotically ap-
proximated by linear equations of the small devia-
tions of the matrices A and B, under the assumption
that the eigenvalues are all distinct. Furthermore,
small deviations of the elements of the matrices A
and B can be expressed by the Taylor expansions of
the multinomial proportions on the basis ofthe above
probabilistic model. Thus, as a result, the small de-
viations of the eigenvalues and vectors (optimal
scores) are asymptotically approximated by the
functions of the small deviations of the multinomial
proportions. From this, the asymptotic normality of
the sample optimal scores are derived.

Computer Programs
The use of electronic computers is indispensable

in applying the methods of quantification, because
the calculations are complex and ordinarily a com-
paratively large amount ofdata are analyzed by these
methods. One of the reasons that Hayashi's four
methods are widely applied in Japan may be that the
program packages are available to the data analysis.
They are, for example, Component Analysis 1-4
(IBM-Japan), Quantas 1-4 (FACOM), Firms III
(NEAC), Quantification 1-4 (Dentsu MARK III),

c

0j-jJD
2

i

m

Response
1 2 --j --- r

Multinominal
distribution

FIGURE 2. Probabilistic model.
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Hayasi 1 - 4 (SPSS-Japanese Version), and so on.
Furthermore, in the NISAN system (26), now being
developed by a group of Japanese statisticians, the
varieties of methods including those for ordered cat-
egories and based on the asymptotic theories will be
available for the convenience of senior statisticians.

It may be obvious from the derivations in the pre-
vious sections that the methods of quantification,
especially from the first to third methods, are
mathematically equivalent to regression analysis,
canonical analysis, and canonical correlation
analysis applied to dummy variables corresponding
to categorical data. Therefore, ifwe carefully use the
programs, we can apply the methods of quantifica-
tion to data analysis by means of the programs for
ordinary multivariate analyses.
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